
Information Coding / Computer Graphics, ISY, LiTH

Introduction to OpenCL
Open Compute Language

18(97)

18(97)

Information Coding / Computer Graphics, ISY, LiTH

19(97)19(97)

Information Coding / Computer Graphics, ISY, LiTH

• Motivation

• Overview

• Examples

• Performance comparison

20(97)20(97)

Information Coding / Computer Graphics, ISY, LiTH

Origins of OpenCL

Initiated by Apple

Managed by Khronos group

Many supporting parties

Many providers

21(97)21(97)

Information Coding / Computer Graphics, ISY, LiTH

22(97)22(97)

Information Coding / Computer Graphics, ISY, LiTH

Why?
• The market could not let CUDA rule the world

• Support for other platforms

• Open standard

• Similarity with OpenGL

For programming ”all” parallel architectures

23(97)23(97)

Information Coding / Computer Graphics, ISY, LiTH

Supported architectures (not complete!)
GPU

Intel compatible CPUs

ARM

FPGA

CELL

Intel Xeon Phi

Who decides? Any company making its own OpenCL
implementation!

24(97)24(97)

Information Coding / Computer Graphics, ISY, LiTH

”Open”?
Means open specification

Like OpenGL

Many providers making their own
implementation

There is not one OpenCL library.

25(97)25(97)

Information Coding / Computer Graphics, ISY, LiTH

No free lunch
Model does not fit all architectures

One size fits all - platform dependent
optimizations hard to do

26(97)26(97)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL for GPU Computing
Mostly similar to CUDA both in architecture and

performance!

Messy setup - but you get used to it

Kernels similar to CUDA

Easier for NVidia to be first with new features

27(97)27(97)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL vs CUDA terminology
OpenCL CUDA

 compute unit multiprocessor (SM)
 work item thread
work group block

 local memory shared memory
private memory registers

And CUDA local memory =?
OpenCL local memory (= CUDA shared memory)

28(97)28(97)

Information Coding / Computer Graphics, ISY, LiTH

Oh, that "local memory"...
CUDA local memory = global memory accessible only by

one thread (like registers but slower)

CUDA shared memory = OpenCL local memory =
memory local inside the SM, shared within block/work group

Anyone else who thinks this makes sense?

29(97)29(97)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL memory model

Been there, done that...

30(97)30(97)

Information Coding / Computer Graphics, ISY, LiTH

OpenCL execution model

Anyone who see ”blocks” and ”threads”?

31(97)31(97)

Information Coding / Computer Graphics, ISY, LiTH

Synchronization
Kernels can synchronize within a work group:

barrier(CLK_LOCAL_MEM_FENCE)

Synchronizes memory access. You choose which kind of
memory access to synchronize (global, local).

The host (CPU) can synchronize on global level:

Available for:
tasks (e.g. clEnqueueNDRangeKernel)

Memory(e.g.clEnqueueReadBuffer)
events (e.g. clWaitforEvents)

32(97)32(97)

Information Coding / Computer Graphics, ISY, LiTH

Heterogenous
Some differences from CUDA: Designed for

heterogenous systems!

Several devices may be active at once

You can specify which device to launch a task to

Query devices and device characteristics

Some overhead compared to CUDA, and the reward
is flexibility!

33(97)33(97)

Information Coding / Computer Graphics, ISY, LiTH

 * Rank sorting in sorting OpenCL

__kernel void sort(__global unsigned int
*data, __global unsigned int *outdata, const
unsigned int length)
{
unsigned int pos = 0;
unsigned int i, b;
unsigned int val;
unsigned int this;

unsigned int __local buf[128];

// loop until all data is covered

this = data[get_global_id(0)];

Example using local (shared) memory:

for (b = 0; b < length; b += 128)
{
// Get data
buf[get_local_id(0)] = data[get_local_id(0) + b];

// Synch
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

//find out how many values are smaller
for (i = 0; i < 128; i++)
if (this > buf[i]) // data[b + i])
pos++;

// Synch
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

}

outdata[pos] = this;
}

34(97)34(97)

Information Coding / Computer Graphics, ISY, LiTH

How about that setup?
1) Get a list of platforms

2) Choose a platform

3) Get a list of devices

4) Choose a device

5) Create a context

6) Load and compile kernel code

35(97)35(97)

Information Coding / Computer Graphics, ISY, LiTH

Then we can start working
7) Allocate memory

8) Copy data to device

9) Run kernel

10) Wait for kernel to complete

11) Read data from device

12) Free resources

36(97)36(97)

Information Coding / Computer Graphics, ISY, LiTH

cl_platform_id platform;
unsigned int no_plat;
err = clGetPlatformIDs(1,&platform,&no_plat);

// Where to run
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
if (err != CL_SUCCESS) return -1;

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context) return -1;
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands) return -1;

1-5: Where to run
Simplified here - might fail!

Context

37(97)37(97)

Information Coding / Computer Graphics, ISY, LiTH

6: Kernel
// What to run
program =
clCreateProgramWithSource(context, 1,
(const char **) & KernelSource, NULL,
&err);
if (!program) return -1;

err = clBuildProgram(program, 0, NULL,
NULL, NULL, NULL);
if (err != CL_SUCCESS) return -1;
kernel = clCreateKernel(program, "hello",
&err);
if (!kernel || err != CL_SUCCESS) return -1;

const char *KernelSource = "\n" \
"__kernel void hello(\n" \
" __global char* a, \n" \
" __global char* b, \n" \
" __global char* c, \n" \
" const unsigned int count) \n" \
"{ \n" \
" int i = get_global_id(0); \n" \
" if(i < count) \n" \
" c[i] = a[i] + b[i]; \n" \
"} \n" \
"\n";

Most programs also load kernels from files

38(97)38(97)

Information Coding / Computer Graphics, ISY, LiTH

7-8: Get the data in there
// Create space for data and copy a and b to device (note that we could also use
clEnqueueWriteBuffer to upload)
input = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(char) * DATA_SIZE, a, NULL);
input2 = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
sizeof(char) * DATA_SIZE, b, NULL);
output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(char) * DATA_SIZE,
NULL, NULL);
if (!input || !output) return -1;

// Send data
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);
if (err != CL_SUCCESS) return -1;

39(97)39(97)

Information Coding / Computer Graphics, ISY, LiTH

9-10: Run kernel, wait for
completion

// Run kernel!
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global,
&local, 0, NULL, NULL);

if (err != CL_SUCCESS) return -1;

clFinish(commands);

40(97)40(97)

Information Coding / Computer Graphics, ISY, LiTH

// Read result
err = clEnqueueReadBuffer(commands, output, CL_TRUE, 0, sizeof(char) * count,
c, 0, NULL, NULL);
if (err != CL_SUCCESS) return -1;

// Print result
printf("%s\n", c);

// Clean up
clReleaseMemObject(input);
clReleaseMemObject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(commands);
clReleaseContext(context);

11-12: Read back data, release

41(97)41(97)

Information Coding / Computer Graphics, ISY, LiTH

”Platform” vs ”device”
Platform = an OpenCL implementation

Device = a chip which the platform supports

42(97)42(97)

Information Coding / Computer Graphics, ISY, LiTH

Language freedom… sort of
+ Very easy to call from any language! Anything that can

call into a C API can call OpenCL!

+ Based on C99. Similar to CUDA.

- Kernel code is only C-style (although a specific
implementation may choose to support more). C++ in 2.2.

43(97)43(97)

Information Coding / Computer Graphics, ISY, LiTH

Performance
Investigations report remarkably small differences

Our research on FFT so far has CUDA up to 2x faster

Very hard to compare, due to multiple OpenCL
implementations

Some report CUDA to be better on NVidia platforms...
some report a draw even there.

Our experience: Usually very close!

44(97)44(97)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions on OpenCL
Don’t fear the complex setup phase! The rest is

similar to CUDA.

Performance tend to be on par with CUDA or almost.

Speciality: heterogenous systems!

45(97)45(97)

