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Open Compute Language

18(97)

18(97)



Information Coding / Computer Graphics, ISY, LiTH

19(97)19(97)



Information Coding / Computer Graphics, ISY, LiTH

• Motivation

• Overview

• Examples

• Performance comparison
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Origins of OpenCL

Initiated by Apple

Managed by Khronos group

Many supporting parties

Many providers
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Why?
• The market could not let CUDA rule the world

• Support for other platforms

• Open standard

• Similarity with OpenGL

For programming ”all” parallel architectures
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Supported architectures (not complete!)
GPU

Intel compatible CPUs

ARM

FPGA

CELL

Intel Xeon Phi

Who decides? Any company making its own OpenCL 
implementation!
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”Open”?
Means open specification

Like OpenGL

Many providers making their own 
implementation

There is not one OpenCL library.
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No free lunch
Model does not fit all architectures

One size fits all - platform dependent 
optimizations hard to do
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OpenCL for GPU Computing
Mostly similar to CUDA both in architecture and 

performance!

Messy setup - but you get used to it

Kernels similar to CUDA

Easier for NVidia to be first with new features
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OpenCL vs CUDA terminology
OpenCL                                             CUDA

        compute unit                      multiprocessor (SM)
 work item                                 thread
work group                                 block

     local memory                        shared memory
private memory                           registers

And CUDA local memory =?
OpenCL local memory (= CUDA shared memory)
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Oh, that "local memory"...
CUDA local memory = global memory accessible only by 

one thread (like registers but slower)

CUDA shared memory = OpenCL local memory = 
memory local inside the SM, shared within block/work group

Anyone else who thinks this makes sense?
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OpenCL memory model

Been there, done that...
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OpenCL execution model

Anyone who see ”blocks” and ”threads”?
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Synchronization
Kernels can synchronize within a work group:

barrier(CLK_LOCAL_MEM_FENCE)

Synchronizes memory access. You choose which kind of 
memory access to synchronize (global, local).

The host (CPU) can synchronize on global level:

Available for:
tasks (e.g. clEnqueueNDRangeKernel)

Memory(e.g.clEnqueueReadBuffer)
events (e.g. clWaitforEvents)
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Heterogenous
Some differences from CUDA: Designed for 

heterogenous systems!

Several devices may be active at once

You can specify which device to launch a task to

Query devices and device characteristics

Some overhead compared to CUDA, and the reward 
is flexibility!
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 * Rank sorting in sorting OpenCL

__kernel void sort(__global unsigned int 
*data, __global unsigned int *outdata, const 
unsigned int length)
{
unsigned int pos = 0;
unsigned int i, b;
unsigned int val;
unsigned int this;

unsigned int __local buf[128];

// loop until all data is covered

this = data[get_global_id(0)];

Example using local (shared) memory:

for (b = 0; b < length; b += 128)
{
// Get data
buf[get_local_id(0)] = data[get_local_id(0) + b];

// Synch
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

//find out how many values are smaller
for (i = 0; i < 128; i++)
if (this > buf[i]) // data[b + i])
pos++;

// Synch
barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);

}

outdata[pos] = this;
}
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How about that setup?
1) Get a list of platforms

2) Choose a platform

3) Get a list of devices

4) Choose a device

5) Create a context

6) Load and compile kernel code
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Then we can start working
7) Allocate memory

8) Copy data to device

9) Run kernel

10) Wait for kernel to complete

11) Read data from device

12) Free resources
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cl_platform_id platform;
unsigned int no_plat;
err =  clGetPlatformIDs(1,&platform,&no_plat);

// Where to run
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device_id, NULL);
if (err != CL_SUCCESS) return -1;

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
if (!context) return -1;
commands = clCreateCommandQueue(context, device_id, 0, &err);
if (!commands) return -1;

1-5: Where to run
Simplified here - might fail!

Context
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6: Kernel
// What to run
program = 
clCreateProgramWithSource(context, 1, 
(const char **) & KernelSource, NULL, 
&err);
if (!program) return -1;

err = clBuildProgram(program, 0, NULL, 
NULL, NULL, NULL);
if (err != CL_SUCCESS) return -1;
kernel = clCreateKernel(program, "hello", 
&err);
if (!kernel || err != CL_SUCCESS) return -1;

const char *KernelSource = "\n" \
"__kernel void hello(              \n" \
"   __global char* a,          \n" \
"   __global char* b,          \n" \
"   __global char* c,          \n" \
"   const unsigned int count)  \n" \
"{                             \n" \
"   int i = get_global_id(0);  \n" \
"   if(i < count)              \n" \
"       c[i] = a[i] + b[i];   \n" \
"}                             \n" \
"\n";

Most programs also load kernels from files
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7-8: Get the data in there
// Create space for data and copy a and b to device (note that we could also use 
clEnqueueWriteBuffer to upload)
input = clCreateBuffer(context,  CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,  
sizeof(char) * DATA_SIZE, a, NULL);
input2 = clCreateBuffer(context,  CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,  
sizeof(char) * DATA_SIZE, b, NULL);
output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(char) * DATA_SIZE, 
NULL, NULL);
if (!input || !output) return -1;

// Send data
err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &input2);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);
if (err != CL_SUCCESS) return -1;
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9-10: Run kernel, wait for 
completion

// Run kernel!
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL, &global, 
&local, 0, NULL, NULL);

if (err != CL_SUCCESS) return -1;

clFinish(commands);
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// Read result
err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(char) * count, 
c, 0, NULL, NULL );  
if (err != CL_SUCCESS) return -1;

// Print result
printf("%s\n", c);

// Clean up
clReleaseMemObject(input);
clReleaseMemObject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(commands);
clReleaseContext(context);

11-12: Read back data, release

41(97)41(97)



Information Coding / Computer Graphics, ISY, LiTH

”Platform” vs ”device”
Platform = an OpenCL implementation

Device = a chip which the platform supports
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Language freedom… sort of
+ Very easy to call from any language! Anything that can 

call into a C API can call OpenCL!

+ Based on C99. Similar to CUDA.

- Kernel code is only C-style (although a specific 
implementation may choose to support more). C++ in 2.2.
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Performance
Investigations report remarkably small differences

Our research on FFT so far has CUDA up to 2x faster

Very hard to compare, due to multiple OpenCL 
implementations

Some report CUDA to be better on NVidia platforms... 
some report a draw even there.

Our experience: Usually very close!
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Conclusions on OpenCL
Don’t fear the complex setup phase! The rest is 

similar to CUDA.

Performance tend to be on par with CUDA or almost.

Speciality: heterogenous systems!
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